1. Cassels J.W., Fröhlich A., Algebraic Number Theory, Academic Press, London, 1967.
2. Czogała A., Sładek A., Higher degree Hilbert symbol equivalence of number fields, Tatra Mountains Math. Publ. 11 (1997), 77–88.
3. Czogała A., Sładek A., Higher degree Hilbert symbol equivalence of number fields II, J. Number Theory 72 (1998), 363–376.
4. Czogała A., Higher degree tame Hilbert-symbol equivalence of number fields, Abh. Math. Sem. Univ. Hamburg 69 (1999), 175–185.
5. Czogała A., On reciprocity equivalence of quadratic number fields, Acta Arith. 58 (1991), 27–46.
6. Czogała A., Witt rings of Hasse domains of global fields, J. Algebra 244 (2001), 604–630.
7. Czogała A., Rothkegel B., Wild primes of a self-equivalence of a number field, Acta Arith. 166 (2014), 27–46.
8.. Leep D.B., Wadsworth A.R., The Hasse norm theorem mod squares, J. Number Theory 42 (1991), 337–348.
9. Milnor J., Algebraic K-Theory and quadratic forms, Invent. Math. 9 (1970), 318–344.
10. Neukirch J., Class Field Theory, Springer-Verlag, Berlin, 1986.
11. Perlis R., Szymiczek K., Conner P., Litherland R., Matching Witts with global fields, Contemp. Math. 155 (1994), 365–387.
12. Rothkegel B., Czogała A., Singular elements and the Witt equivalence of rings of algebraic integers, Ramanujan J. 17 (2008), 185–217.
13. Somodi M., On the size of the wild set, Canad. J. Math. 55 (2005), 180–203.
14. Somodi M., A characterization of the finite wild sets of rational self-equivalences, Acta Arith. 121 (2006), 327–334.
15. Somodi M., Self-equivalences of the Gaussian field, Rocky Mountain J. Math. 38 (2008), 2077–2089.
16. Sładek A., Hilbert symbol equivalence and Milnor K-functor, Acta Math. Inform. Univ. Ostraviensis 6 (1998), 183–190.
Google Scholar