1. Figula Á., Száz Á., Graphical relationships between the infimum and the intersection convolutions, Math. Pannon. 21 (2010), 23–35.
2. Glavosits T., Száz Á., The infimal convolution can be used to easily prove the classical Hahn–Banach theorem, Rostock. Math. Kolloq 65 (2010), 71–83.
3. Glavosits T., Száz Á., The generalized infimal convolution can be used to naturally prove some dominated monotone additive extension theorems, Annales Mathematicae Silesianae 25 (2011), 67–100.
4. Glavosits T., Száz Á., Constructions and extensions of free and controlled additive relations, in: Handbook in Functional Equations; Functional Inequalities, ed. by Bessonov S.G., Rassias Th.M., to appear.
5. Höhle U., Kubiak T., On regularity of sup-preserving maps: generalizing Zareckli ̆ı’s theorem, Semigroup Forum 83 (2011), 313–319.
6. Moreau J.J., Inf-convolution, sous-additivité, convexité des fonctions numériques, J. Math. Pures Appl. 49 (1970), 109–154.
7. Strömberg T., The operation of infimal convolution, Dissertationes Math. 352 (1996), 1–58.
8. Száz Á., The intersection convolution of relations and the Hahn-Banach type theorems, Ann. Polon. Math. 69 (1998), 235–249.
9. Száz Á., The infimal convolution can be used to derive extension theorems from the sandwich ones, Acta Sci. Math. (Szeged) 76 (2010), 489–499.
10. Száz Á., A reduction theorem for a generalized infimal convolution, Tech. Rep., Inst. Math. Inf., Univ. Debrecen 11 (2009), 1–4.
Google Scholar